Minimal Distances in Generalized Residue Codes
نویسنده
چکیده
A general type of linear cyclic codes is introduced as a straightforward generalization of quadratic residue codes, e-residue codes, generalized quadratic residue codes and polyadic codes. A generalized version of the well-known squareroot bound for odd-weight words is derived.
منابع مشابه
The twisted squaring construction, trellis complexity, and generalized weights of BCH and QR codes
The structure of the twisted squaring construction, a generalization of the squaring construction, is studied with respect to trellis diagrams and complexity. We show that binary affine-invariant codes, which include the extended primitive BCH codes, and the extended binary quadratic-residue codes, are equivalent to twisted squaring construction codes. In particular, a recursive symmetric rever...
متن کاملOn the Minimum Distance of Some Families of Z2k-Linear Codes
With the help of a computer, we obtain the minimum distance of some codes belonging to two families of Z2k -linear codes: the first is the generalized Kerdock codes which aren’t as good as the best linear codes and the second is the Hensel lift of quadratic residue codes. In the latter, we found new codes with same minimum distances as the best linear codes of same length and same cardinality. ...
متن کاملClassification of perfect codes and minimal distances in the Lee metric
Perfect codes and minimal distance of a code have great importance in the study of theory of codes. The perfect codes are classified generally and in particular for the Lee metric. However, there are very few perfect codes in the Lee metric. The Lee metric has nice properties because of its definition over the ring of integers residue modulo q. It is conjectured that there are no perfect codes ...
متن کاملRepresentations of Lie Algebras and Coding Theory
Linear codes with large minimal distances are important error correcting codes in information theory. Orthogonal codes have more applications in the other fields of mathematics. In this paper, we study the binary and ternary orthogonal codes generated by the weight matrices on finite-dimensional modules of simple Lie algebras. The Weyl groups of the Lie algebras act on these codes isometrically...
متن کاملConstructions of Generalized Concatenated Codes and Their Trellis-Based Decoding Complexity
In this correspondence, constructions of generalized concatenated (GC) codes with good rates and distances are presented. Some of the proposed GC codes have simpler trellis complexity than Euclidean geometry (EG), Reed–Muller (RM), or Bose–Chaudhuri–Hocquenghem (BCH) codes of approximately the same rates and minimum distances, and in addition can be decoded with trellis-based multistage decodin...
متن کامل